On the Ruelle eigenvalue sequence

نویسندگان

  • Oscar F. Bandtlow
  • Oliver Jenkinson
چکیده

For certain real analytic data, we show that the eigenvalue sequence of the associated transfer operator L is insensitive to the holomorphic function space on which L acts. Explicit bounds on this eigenvalue sequence are established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of the Existence and Simplicity of a Maximal Eigenvalue for RuellePerronFrobenius Operators

We give a new proof of a result due to Ruelle about the existence and simplicity of a unique maximal eigenvalue for a Ruelle^Perron^Frobenius operator acting on some Ho« lder continuous function space. Mathematics Subject Classi¢cations (1991): Primary 58F23, Secondary 30C62. Key words: locally expanding, mixing, Ruelle^Perron^Frobenius operator, maximal eigenvalue. 1. Introduction Ruelle's The...

متن کامل

Eigenfunctions of the Laplacian and Associated Ruelle Operator

Let Γ be a co-compact Fuchsian group of isometries on the Poincaré disk D and ∆ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction f of ∆, equivariant by Γ with real eigenvalue λ = −s(1 − s), where s = 1 2 + it, admits an integral representation by a distribution D f,s (the Helgason distribution) which is equivariant by Γ and supported at infinity ∂D = S 1. The geodesic flo...

متن کامل

Analysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives

In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...

متن کامل

Spectral properties of the Ruelle operator for product-type potentials on shift spaces

We study a class of potentials f on one sided full shift spaces over finite or countable alphabets, called potentials of product type. We obtain explicit formulae for the leading eigenvalue, the eigenfunction (which may be discontinuous) and the eigenmeasure of the Ruelle operator. The uniqueness property of these quantities is also discussed and it is shown that there always exists a Bernoulli...

متن کامل

Spectral theory of transfer operators∗

We give a survey on some recent developments in the spectral theory of transfer operators, also called Ruelle-Perron-Frobenius (RPF) operators, associated to expanding and mixing dynamical systems. Different methods for spectral study are presented. Topics include maximal eigenvalue of RPF operators, smooth invariant measures, ergodic theory for chain of markovian projections, equilibrium state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007